Module text(s)
The lecture notes are designed to be self-contained, with pointers to web-resources and related material. Recommended readings include
- Crandall, J. W., Oudah, M., Ishowo-Oloko, F., Abdallah, S., Bonnefon, J., Cebrian, M., Shariff, A., Goodrich, M.A. and Rahwan, I. (2018). Cooperating with machines. Nature communications, vol. 9(1), pp. 233.
- Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J. & Liu, H. (2017). Feature selection: a data perspective. ACM Computing Surveys (CSUR), vol. 50(6), pp. 94.
- Abdallah, S. & Kaisers, M. (2016). Addressing environment non-stationarity by repeating Q-learning updates. The Journal of Machine Learning Research, vol. 17(1), pp. 1582-1612.
- Gu, B., Sheng, V. S., Tay, K. Y., Romano, W. & Li, S. (2015). Incremental support vector learning for ordinal regression. IEEE Transactions on Neural networks and learning systems, vol. 26(7), pp. 1403-1416. Request item
- Li, J., Hu, X., Jian, L. & Liu, H. (2016). Toward time-evolving feature selection on dynamic networks. In Data Mining (ICDM), 2016 IEEE 16th International Conference on (pp. 1003-1008). IEEE. Request item
- MacKay, D. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press. Open resource
Chapters in the following books are interesting to read